motivated by curiosity.

Dynamics of propofol-induced unconsciousness across primate neocortex

06.06.16 Posted in Primate Neurophysiology Studies by

The precise neural mechanisms underlying transitions between consciousness and anesthetic-induced unconsciousness remain unclear. Here, we studied intracortical neuronal dynamics leading to propofol-induced unconsciousness by recording single-neuron activity and local field potentials directly in the functionally interconnecting somatosensory (S1) and frontal ventral premotor (PMv) network during a gradual behavioral transition from full alertness to loss of consciousness (LOC) and on through a deeper anesthetic level. Macaque monkeys were trained for a behavioral task designed to determine the trial-by-trial alertness and neuronal response to tactile and auditory stimulation. We show that disruption of coherent beta oscillations between S1 and PMv preceded, but did not coincide with, the LOC. LOC appeared to correspond to pronounced but brief gamma-/high-beta-band oscillations (lasting 3 min) in PMv, followed by a gamma peak in S1. We also demonstrate that the slow oscillations appeared after LOC in S1 and then in PMv after a delay, together suggesting that neuronal dynamics are very different across S1 versus PMv during LOC. Finally, neurons in both S1 and PMv transition from responding to bimodal (tactile and auditory) stimulation before LOC to only tactile modality during unconsciousness, consistent with an inhibition of multisensory integration in this network. Our results show that propofol-induced LOC is accompanied by spatio- temporally distinct oscillatory neuronal dynamics across the somatosensory and premotor network and suggest that a transitional state from wakefulness to unconsciousness is not a continuous process, but rather a series of discrete neural changes.

Temporally coordinated deep brain stimulation in the dorsal and ventral striatum synergistically enhances associative learning

06.06.16 Posted in Primate Neurophysiology Studies by

The primate brain has the remarkable ability of mapping sensory stimuli into motor behaviors that can lead to positive outcomes. We have previously shown that during the reinforcement of visual-motor behavior, activity in the caudate nucleus is correlated with the rate of learning. Moreover, phasic microstimulation in the caudate during the reinforcement period was shown to enhance associative learning, demonstrating the importance of temporal specificity to manipulate learning related changes. Here we present evidence that extends upon our previous finding by demonstrating that temporally coordinated phasic deep brain stimulation across both the nucleus accumbens and caudate can further enhance associative learning. Monkeys performed a visual-motor associative learning task and received stimulation at time points critical to learning related changes. Resulting performance revealed an enhancement in the rate, ceiling, and reaction times of learning. Stimulation of each brain region alone or at different time points did not generate the same effect.

Frequency-dependent representation of feedback-related information in the human medial and lateral prefrontal cortex

06.06.16 Posted in Human Neurophysiology Studies by

The feedback-related negativity (FRN) is a commonly observed potential in scalp electroencephalography (EEG) studies related to the valence of feedback about a subject’s performance. This potential classically manifests as a negative deflection in medial frontocentral EEG contacts following negative feedback. Recent work has shown prominence of theta power in the spectral composition of the FRN, placing it within the larger class of “frontal midline theta” cognitive control signals. Although the dorsal anterior cingulate cortex (dACC) is thought to be the cortical generator of the FRN, conclusive data regarding its origin and propagation are lacking. Here we examine intracranial electrophysiology from the human medial and lateral prefrontal cortex (PFC) to better understand the anatomical localization and communication patterns of the FRN. We show that the FRN is evident in both low- and high-frequency local field potentials (LFPs) recorded on electrocorticography. The FRN is larger in medial compared with lateral PFC, and coupling between theta band phase and high-frequency LFP power is also greater in medial PFC. Using Granger causality and conditional mutual information analyses, we provide evidence that feedback-related information propagates from medial to lateral PFC, and that this information transfer oscillates with theta-range periodicity. These results provide evidence for the dACC as the cortical source of the FRN, provide insight into the local computation of frontal midline theta, and have implications for reinforcement learning models of cognitive control.

Sharp wave ripples during visual exploration in the primate hippocampus

06.06.16 Posted in Primate Neurophysiology Studies by

Hippocampal sharp-wave ripples (SWRs) are highly synchronous oscillatory field potentials that are thought to facilitate memory consolidation. SWRs typically occur during quiescent states, when neural activity reflecting recent experience is replayed. In rodents, SWRs also occur during brief locomotor pauses in maze exploration, where they appear to support learning during experience. In this study, we detected SWRs that occurred during quiescent states, but also during goal-directed visual exploration in nonhuman primates (Macaca mulatta). The exploratory SWRs showed peak frequency bands similar to those of quiescent SWRs, and both types were inhibited at the onset of their respective behavioral epochs. In apparent contrast to rodent SWRs, these exploratory SWRs occurred during active periods of exploration, e.g., while animals searched for a target object in a scene. SWRs were associated with smaller saccades and longer fixations. Also, when they coincided with target-object fixations during search, detection was more likely than when these events were decoupled. Although we observed high gamma-band field potentials of similar frequency to SWRs, only the SWRs accompanied greater spiking synchrony in neural populations. These results reveal that SWRs are not limited to off-line states as conventionally defined; rather, they occur during active and informative performance windows. The exploratory SWR in primates is an infrequent occurrence associated with active, attentive performance, which may indicate a new, extended role of SWRs during explora- tion in primates.

An open source 3-d printed modular micro-drive system for acute neurophysiology

03.14.14 Posted in Recording Methods by

Current, commercial, electrode micro-drives that allow independent positioning of multiple electrodes are expensive. Custom designed solutions developed by individual laboratories require fabrication by experienced machinists working in well equipped machine shops and are therefore difficult to disseminate into widespread use. Here, we present an easy to assemble modular micro-drive system for acute primate neurophysiology (PriED) that utilizes rapid prototyping (3-d printing) and readily available off the shelf-parts. The use of 3-d printed parts drastically reduces the cost of the device, making it available to labs without the resources of sophisticated machine shops. The direct transfer of designs from electronic files to physical parts also gives researchers opportunities to easily modify and implement custom solutions to specific recording needs. We also demonstrate a novel model of data sharing for the scientific community: a publicly available repository of drive designs. Researchers can download the drive part designs from the repository, print, assemble and then use the drives. Importantly, users can upload their modified designs with annotations making them easily available for others to use.

Studying task-related activity of individual neurons in the human brain

02.17.13 Posted in Human Neurophysiology Studies by

Single neuronal studies remain the gold standard for studying brain function. Here, we describe a protocol for studying task-related single neuronal activity in human subjects during neurosurgical procedures involving microelectrode recordings. This protocol has two phases: a pre-operative and intra-operative phase. During the pre-operative phase we discuss informed consent, equipment setup, and behavioral testing. During the intra-operative phase we discuss the procedure for microelectrode recordings. Because patients are often awake during these procedures, this protocol can be performed in conjunction with behavioral tasks to study a variety of cognitive functions. We describe the protocol in detail and provide two examples of expected results. Additionally, we discuss potential difficulties and pitfalls related to intra-operative studies. This protocol takes approximately 1.5 hours to complete.

Encoding of rules by neurons in the human dorsolateral prefrontal cortex

11.21.12 Posted in Human Neurophysiology Studies by

We use rules to extend learned behavior beyond specific instances to general scenarios. The prefrontal cortex (PFC) is thought to play an important role in representing rules, as evidenced by subjects who have difficulty in following rules after PFC damage and by animal studies demonstrating rule sensitivity of individual PFC neurons. How rules are instantiated at the single-neuronal level in the human brain, however, remains unclear. Here, we recorded from individual neurons in the human dorsolateral prefrontal cortex (DLPFC) as subjects performed a task in which they evaluated pairs of images using either of 2 abstract rules. We find that DLPFC neurons selectively encoded these rules while carrying little information about the subjects’ responses or the sensory cues used to guide their decisions.

Human dorsal anterior cingulate cortex neurons mediate ongoing behavioural adaptation

05.17.12 Posted in Human Neurophysiology Studies by

The ability to optimize behavioural performance when confronted with continuously evolving environmental demands is a key element of human cognition. The dorsal anterior cingulate cortex (dACC), which lies on the medial surface of the frontal lobes, is important in regulating cognitive control. Hypotheses about its function include guiding reward-based decision making, monitoring for conflict between competing responses and predicting task difficulty. Precise mechanisms of dACC function remain unknown, however, because of the limited number of human neurophysiological studies. Here we use functional imaging and human single-neuron recordings to show that the firing of individual dACC neurons encodes current and recent cognitive load. We demonstrate that the modulation of current dACC activity by previous activity produces a behavioural adaptation that accelerates reactions to cues of similar difficulty to previous ones, and retards reactions to cues of different difficulty. Furthermore, this conflict adaptation, or Gratton effect, is abolished after surgically targeted ablation of the dACC. Our results demonstrate that the dACC provides a continuously updated prediction of expected cognitive demand to optimize future behavioural responses. In situations with stable cognitive demands, this signal promotes efficiency by hastening responses, but in situations with changing demands it engenders accuracy by delaying responses.

Single-neuron responses in the human nucleus accumbens during a financial decision-making task

04.06.12 Posted in Human Neurophysiology Studies by

Linking values to actions and evaluating expectations relative to outcomes are both central to reinforcement learning and are thought to underlie financial decision-making. However, neurophysiology studies of these processes in humans remain limited. Here, we recorded the activity of single human nucleus accumbens neurons while subjects performed a gambling task. We show that the nucleus accumbens encodes two signals related to subject behavior. First, we find that under relatively predictable conditions, single neuronal activity predicts future financial decisions on a trial-by-trial basis. Interestingly, we show that this activity continues to predict decisions even under conditions of uncertainty (e.g., when the probability of winning or losing is 50/50 and no particular financial choice predicts a rewarding outcome). Furthermore, we find that this activity occurs, on average, 2 s before the subjects physically manifest their decision. Second, we find that the nucleus accumbens encodes the difference between expected and realized outcomes, consistent with a prediction error signal. We show this activity occurs immediately after the subject has realized the outcome of the trial and is present on both the individual and population neuron levels. These results provide human single neuronal evidence that the nucleus accumbens is integral in making financial decisions.

Exploring dependence between brain signals in a monkey during learning

11.29.11 Posted in Analysis Methods by

Our goal is to investigate dependence between brain wave oscillations in the nucleus accumbens (NAc) and the hippocampus (Hc) regions of a macaque monkey during a learning association task. The classical approach to studying dependence in the spectral domain is via cross-coherence. It is computed for each frequency (or band) and identifies the frequency bands that drive the linear association between the components in a multi-variate time series. However, cross-coherence may not fully capture the complex dependence structure in brain signals such as local field potentials. In this article, we develop new tools for discovering associations between the theta (4–8 Hz) and gamma (32–50 Hz) activities at both contemporaneous blocks and lagged time blocks. We propose a class of piecewise harmonizable processes under which we give a precise definition of these dependence measures and develop simple estimators in the case where the time-series data are recorded over several replicated trials. Our analysis clearly demonstrates strong dependence between the theta and gamma oscillations in the NAc and the Hc regions of a macaque monkey during learning. Moreover, we determined the lagged dependence that differentiate the ‘correct’ responses (i.e., the monkey was able to identify the correct association) from the ‘incorrect’ responses.