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Our goal is to investigate dependence between brain wave oscillations in the nucleus accumbens (NAc) and the
hippocampus (Hc) regions of a macaque monkey during a learning association task. The classical approach to
studying dependence in the spectral domain is via cross-coherence. It is computed for each frequency (or band) and
identifies the frequency bands that drive the linear association between the components in a multi-variate time
series. However, cross-coherence may not fully capture the complex dependence structure in brain signals such as
local field potentials. In this article, we develop new tools for discovering associations between the theta (4–8 Hz)
and gamma (32–50 Hz) activities at both contemporaneous blocks and lagged time blocks. We propose a class of
piecewise harmonizable processes under which we give a precise definition of these dependence measures and
develop simple estimators in the case where the time-series data are recorded over several replicated trials. Our
analysis clearly demonstrates strong dependence between the theta and gamma oscillations in the NAc and the Hc
regions of a macaque monkey during learning. Moreover, we determined the lagged dependence that differentiate
the ‘correct’ responses (i.e., the monkey was able to identify the correct association) from the ‘incorrect’ responses.

Keywords: Bivariate time series; cross-coherence; dual frequency coherence; coherence between amplitudes; Fourier
transform; harmonizable processes; lagged coherence; Loève spectrum; spectral analysis.

1. INTRODUCTION

Spectral analysis is a widely used tool for studying associations between neuronal activity and cognition. Among the more recent
work on this subject, see Bramon et al. (2004), Fiecas and Ombao (2011) Fiecas et al. (2010,), Sun et al. (2004) and Trejo et al. (2007).
Within the neuroscience community, there is a strong interest in studying dependence between oscillatory activities at different
brain regions. One standard approach to measuring dependence between channels or brain structures is by coherence analysis,
which was demonstrated by Ombao and Van Bellegem (2008) to have an intuitive interpretation as being the squared magnitude of
cross-correlation between a pair of bandpass-filtered time series. Estimation and inference for coherence is discussed by Brillinger
(1981, 2001) and Shumway and Stoffer (2011).

The primary aim in this article is to investigate connectivity between oscillatory activities in the nucleus accumbens (NAc) and the
hippocampus (Hc) of a macaque monkey during a learning experiment. These structures are implicated in human neurological and
mental disorders. Here, we analyse local field potentials (LFPs) from chronically implanted probes. Unlike signals recorded from
noninvasive procedures (such as electroencephalograms), LFPs directly measure brain electrical activity. During this experiment,
the monkey learns the correspondence between elements in two groups of pictures. When the monkey correctly identified the
correspondence in a trial, he received a reward in the form of a beverage. This research is clinically significant because temporal
relationships between oscillatory patterns in the Hc and NAc during learning could potentially shed important insights on illnesses
such as Alzheimer disease. Consequently, this could aid clinicians in generating rational strategies for modifying this process through
deep brain stimulation or other means to enhance memory when it is affected by disease.

The common approach to study relationships in oscillatory patterns, standard coherence analysis, has a number of limitations. First,
it examines dependence between brain waves oscillating only at identical frequency bands. This shortcoming is significant because
recent studies suggest that memory and learning processes are directly related with interactions between waves oscillating at
different frequency bands. See Nyhus and Curran (2010), Händel and Haarmeier (2009) and Varela et al. (2001). These results highlight
the importance of developing statistical approaches for the analysis of such oscillatory dependencies, known as cross-frequency
coupling. Another limitation of standard coherence is that it reflects only contemporaneous dependence (i.e. dependence at the
same time block). Here, we develop a model that can directly address whether the presence of theta (4–8 Hz) activity in the NAc
channel at the current time block leads to increased or decreased gamma (30–50 Hz) activity at the Hc channel at a next time block.
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The remainder of this article is organized as follows. In Section 2, we discuss the concept of dual-frequency coherence
(dependence between oscillatory activities at different frequency bands) under the context of harmonizable processes. In Section 3,
we develop the piecewise harmonizable process model which allows one to model both the evolution of the dual-frequency
dependence and the dual-frequency dependence between different time blocks. In Section 4, we derive the estimators for the
proposed spectral exploratory data analysis. In Section 5, we study cross-frequency oscillatory dependence in the LFP dataset from a
macaque monkey using the proposed piecewise harmonizable process.

2. OVERVIEW OF HARMONIZABLE PROCESSES

The classical approach to studying spectral dependencies is via cross-coherence analysis. Define U(t) ¼ [X(t),Y(t)]
0

to be zero-mean
bivariate stationary time series whose Cramér representation is given by

UðtÞ ¼
Z þ0:5

�0:5

expði2pxtÞ dZðxÞ; ð1Þ

where dZ(x) ¼ [dZX(x), dZY(x)]
0

is a zero-mean bivariate random increment process that satisfies cov[dZ(x), dZ(k)] ¼
d(x � k)f(x) dx dk and f(x) is the 2 · 2 spectral matrix whose diagonal elements, fXX(x) and fYY(x), are the auto-spectra and
off-diagonal element fXY(x) is the cross-spectrum. Cross-coherence between signals X(t) and Y(t) at a single frequency x, denoted by
qXY(x) can be expressed as

qXYðxÞ ¼ jcor½dZXðxÞ;dZYðxÞ�j2 ð2Þ

¼ jfXYðxÞj2

½fXXðxÞfYYðxÞ�
: ð3Þ

Under the Cramér representation for stationary processes, the random coefficients dZ(x) for the different oscillatory components
are uncorrelated. However, as a number of empirical results suggest, this is not reasonable for many brain signals. To extract more
complex dependence structures in brain signals, one can use dual-frequency coherence which is developed under the class of
harmonizable processes introduced by Loéve (1955). A process U(t) is harmonizable if it admits the representation

UðtÞ ¼
Z þ0:5

�0:5

expði2pxtÞ dZðxÞ; ð4Þ

where dZ(x) is a zero-mean random vector increment process that satisfies

cov½dZðxÞ;dZ�ðkÞ� ¼ fðx; kÞdx dk; ð5Þ

where A� denotes the complex conjugate transpose of A and f(x, k) is a complex-valued generalized spectral matrix or Loève
spectral matrix. Under the representation in (4) we define dual-frequency auto-coherence and dual-frequency cross-coherence to be
respectively,

qXXðx; kÞ ¼ jcor½dZXðxÞ;dZXðkÞ�j2

qXYðx; kÞ ¼ jcor½dZXðxÞ;dZYðkÞ�j2:
ð6Þ

Both qXX (x, k) and qXY (x, k) fall on [0,1]. When qXY (x, k) is close to 1, the real and imaginary parts of dZX (x) and dZY (k) are highly
correlated. The procedure for estimating qXX (x, k) and qXY (x, k) from several time series recorded from repeated trials is discussed in
Section 4.

In our analysis, we noted that qXX (x,k) and qXY (x,k) do not necessarily capture all the interesting features in the data. In particular,
these two measures did not detect differences in the dependence structure between two conditions (one where the monkey
correctly identified the correspondence and the other where the monkey made the mistake). Here, we will also develop other
exploratory tools for probing dependence in the spectral domain. While dual-frequency coherence measures correlation between
the complex-valued random coefficients, we shall also examine correlations between magnitudes of the random coefficients.
The analogues of dual-frequency coherence measures in (6) are the dual-frequency auto-coherency and dual-frequency cross-
coherency in amplitude which we define to be respectively,

fXXðx; kÞ ¼ cor½jdZXðxÞj; jdZXðkÞj�; ð7Þ

fXYðx; kÞ ¼ cor½jdZXðxÞj; jdZYðkÞj�: ð8Þ

Both fXX (x, k) and fXY (x, k) fall on [�1, 1]. When fXY (x, k) is close to 1 or �1, the magnitudes of dZX (x) and dZY (k) are highly
correlated.
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In this section, both dual-frequency coherence and dual-frequency coherency in amplitude are contemporaneous measures of
dependence between oscillatory waveforms. In the next section, we develop a model that addresses dependence between
oscillatory waveforms at different time blocks.

For harmonizable processes, signals are represented as superpositions of sine and cosine waves at different frequencies x with
coefficients dZ(x) that may be correlated. Under this representation the signals are generally nonstationary. The class of
harmonizable processes includes a large class of nonstationary processes by generalizing the covariance of the random coefficients
dZ(x) to the Loève spectral matrix f(x, k) from a diagonal matrix to one with potentially nonzero off-diagonal elements. The
nonstationarity structure in the signals is evident when we consider the inverse Fourier transform of the Loève spectral matrix,

Cðs; tÞ ¼ E½UðsÞU�ðtÞ�

¼
Z Z

expf2piðsx� tkÞgfðx; kÞdx dk;

where the temporal correlation function, C, describes directly the nonstationarity properties of the signals.

3. PIECEWISE HARMONIZABLE PROCESSES

We shall now develop the piecewise harmonizable process and extend the concepts of dual-frequency coherence and dual-frequency
coherency in amplitude to describe frequency associations at different time blocks. To motivate this model, suppose that based on
physiological information from an experiment, one can segment the time series into B blocks which we denote I1, . . . , IB and define
the block indicator function to be vb(t), which takes the value 1 when t 2 Ib and 0 otherwise. For the LFP data described in Section 5,
it was natural to segment the time series into B ¼ 4 time blocks where each block lasted for 512 milliseconds. During the first time
block the monkey fixated at the centre of the screen; during the second block, one picture was presented and remained on the
screen; during the third time block the picture was removed from the screen; and during the fourth time block four doorways were
presented and the monkey needed to select one doorway that was matched to the picture presented on the second time block.

Based on the predefined block segmentation, the bivariate time series U(t) ¼ [X(t), Y(t)] is piecewise harmonizable if it has the
representation

UðtÞ ¼
XB

b¼1

vbðtÞ
Z þ0:5

�0:5

expði2pxtÞdZbðxÞ; ð9Þ

where dZbðxÞ ¼ ½dZb
X ðxÞ;dZb

Y ðxÞ�
0 is a zero-mean random bivariate increment processes. An obvious special case of the piecewise

harmonizable process, when B ¼ 1, is the harmonizable process already discussed in the previous section. Dependence measures of
interest will include contemporaneous dual-frequency coherence and coherency in amplitude and their corresponding block-lagged
dependence measures. In particular, the dual-frequency auto- and cross-coherence between frequencies x at time block b and k at
time block q are defined to be

qXX ½ðb;xÞ; ðq; kÞ� ¼ jcor½dZb
X ðxÞ;dZq

X ðkÞ�j
2; ð10Þ

qXY ½ðb;xÞ; ðq; kÞ� ¼ jcor½dZb
X ðxÞ;dZq

Y ðkÞ�j
2: ð11Þ

Similarly, these measures of dependence between lagged blocks can be extended to the auto- and cross-coherency in amplitudes
which we define respectively, to be

fXX ½ðb;xÞ; ðq; kÞ� ¼ cor½jdZb
X ðxÞj; jdZq

X ðkÞj�; ð12Þ

fXY ½ðb;xÞ; ðq; kÞ� ¼ cor½jdZb
Y ðxÞj; jdZq

Y ðkÞj�: ð13Þ

The proposed lagged measures allow the investigator to study how changes in the oscillatory activity at frequency x at a time block
b may be associated to an increase or a decrease in oscillatory activity at frequency c at the next time block b + 1. Note that due to the
temporal sequence in the data (i.e. activity at time block b happens before b + 1), one can make stronger claims of Granger-type
causality. Thus, when fXY[(b, x); (b + 1, k)] is close to 1, then we say that an increase in magnitude of the x-waveforms in time-series X
at frequency x at time block b leads to an increase in the magnitude of the k-waveforms in time-series Y at the next time block b + 1.

4. ESTIMATION PROCEDURES AND INFERENCE

We now present estimators for the coherence measures described before. We develop these estimators under the context of
replicated time series. In our dataset which is typical in neuroscience experiments, we collect time series over hundreds of trials. Here,

EXPLORING DEPENDENCE BETWEEN BRAIN SIGNALS

J. Time Ser. Anal. 2012, 33 771–778 � 2011 Blackwell Publishing Ltd. wileyonlinelibrary.com/journal/jtsa

7
7

3



we shall assume that the spectral features are shared by signals recorded over all trials. For simplicity and to keep our focus on the
new model and new dependence measures proposed, we shall also assume the trials to be independent realizations of the same
underlying process.

Let Ur(t) ¼ [X r(t),Y r(t)] be the zero mean time series recorded for the rth trial r ¼ 1, . . . , R. Our estimators are based on the Fourier
coefficients which are the sample analogues of the random increment processes dZX(x), dZY(x),

dr
XðxÞ ¼

XT

t¼0

XrðtÞ expð�i2pxtÞ and dr
YðxÞ ¼

XT

t¼0

YrðtÞ expð�i2pxtÞ:

For the lagged linear measures estimators, we will use the block-dependent Fourier coefficients,

dr
Xðb;xÞ ¼

XT

t¼0

vbðtÞXrðtÞ expð�i2pxtÞ; dr
Yðb;xÞ ¼

XT

t¼0

vbðtÞYrðtÞ expð�i2pxtÞ:

Usually, the interest in interactions between frequencies of brain signals relies on frequency bands rather than singleton frequencies.
In our analysis, we were primarily interested in the theta (4–8 Hz) and gamma (30–50 Hz) bands. Therefore, we summarize the
Fourier coefficients at a particular frequency band, for instance #, by taking the average over all Fourier coefficients at frequencies
that fall in the #-band, that is,

dr
Xð#Þ ¼ avefdr

Xðx‘Þ : x‘ 2 #-bandg; dr
Xðb; #Þ ¼ avefdr

Xðb;x‘Þ : x‘ 2 #-bandg:

Similarly, for the estimators for the coherency in amplitude measures, we compute the average over the amplitudes:

kdr
Xð#Þk ¼ avefjdr

Xðx‘Þj : x‘ 2 #-bandg; kdr
Xðb; #Þk ¼ avefjdr

Xðb;x‘Þj : x‘ 2 #-bandg:

Our estimators for the dual-frequency lagged auto-coherence and lagged cross-coherence are respectively,

q̂XX ½ðb; hÞ; ðq; cÞ� ¼
PR

r¼1 dr
Xðb; hÞdr�

X ðq; cÞPR
r¼1 jd

r
Xðb; hÞj

PR
r¼1 jd

r
Xðq; cÞj

;

q̂XY ½ðb; hÞ; ðq; cÞ� ¼
PR

r¼1 dr
Xðb; hÞdr�

Y ðq; cÞPR
r¼1 jd

r
Xðb; hÞj

PR
r¼1 jd

r
Yðq; cÞj

:

For dual-frequency coherency in amplitude, the estimators are the sample correlations of the samples kdr
Xðb; hÞk and kdr

Yðq; cÞk,
r ¼ 1, . . . , R. The estimators for the lagged dual-frequency auto-coherence in amplitude and cross-coherence are respectively,

f̂XX ½ðb; hÞ; ðq; cÞ� ¼
PR

r¼1ðkd
r
Xðb; hÞk � kdr

Xðb; hÞkÞðkdr
Xðq; cÞk � kdr

Xðq; cÞkÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPR
r¼1ðkd

r
Xðb; hÞk � kd

r
Xðb; hÞkÞ

2PR
r¼1ðkd

r
Xðq; cÞk � kd

r
Xðq; cÞkÞ

2
q ;

f̂XY ½ðb; hÞ; ðq; cÞ� ¼
PR

r¼1ðkd
r
Xðb; hÞk � kdr

Xðb; hÞkÞðkdr
Yðq; cÞk � kdr

Yðq; cÞkÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPR
r¼1ðkd

r
Xðb; hÞk � kdr

Xðb; hÞkÞ
2PR

r¼1ðkd
r
Yðq; cÞk � kdr

Yðq; cÞkÞ
2

q :

To perform inference in the proposed measures of dependence, we are primarily interested in testing the null hypotheses

H0 : qXY ½ðb; hÞ; ðb� 1; cÞ� ¼ 0

and

H0 : qXX ½ðb; hÞ; ðb� 1; cÞ� ¼ 0:

The exact distribution for dual-frequency coherence estimators is inherited from the magnitude-squared coherence (MSC) function
derived by Fisher (1928) and later further developed by Carter et al. (1973) and Brillinger (1981, 2001). However, under the null
hypothesis the exact distribution is reduced to the following beta distribution:

betað1; R� 1Þ : pðq̂2Þ ¼ ðR� 1Þð1� jq̂j2ÞR�2:

We use this beta distribution to perform the inference of dual coherence measures in the data analysis section. Similarly, for the
lagged coherence in amplitude measures, we test the hypotheses

H0 : fXY ½ðb; hÞ; ðb� 1; cÞ� ¼ 0 and H0 : fXX ½ðb; hÞ; ðb� 1; cÞ� ¼ 0:

In this case, we can use the distribution properties of the sample correlation which are based on the asymptotic normal
distribution of Fisher’s transformation (Ferguson, 1996):

ffiffiffi
R
p 1

2
log

1þ f̂

1� f̂
� 1

2
log

1þ f
1� f

" #
! Nð0; 1Þ:
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Figure 1. Time course of trials. Each block length consists on 512 time points

5. ANALYSIS OF LFP DATA

LFPs are obtained from electrodes located deep in the brain and sample the actual structures of interest with high spatial resolution.
LFPs are similar to electroencephalograms (EEGs) as both signals measure brain electrophysiological activity. However, contrary to
LFPs, scalp EEGs are recordings of a summation of electrical activity at low spatial resolution. Moreover, EEGs are attenuated by the
skull, scalp and muscle artefacts. Finally, EEGs are quite poor at localizing activity deep and central in the brain such as that arising
from medial structures as the Hc and NAc. Hence, our LFP data allow unique access to these deeply situated and critically important
structures.

Our dataset consists of LFPs recorded while a macaque monkey was performing a learning association task. In the experiment, the
monkey was presented either a novel or familiar picture from a set of four possible pictures each of which corresponded to a specific
doorway. The monkey has to learn the correct correspondence over the course of the experiment. If the monkey chooses the correct
door via joystick movement, a reward (juice or beverage) was given. Otherwise, no reward was given.

The LFP signals were recorded at the sampling rate of 1000 Hz. Each trial consisted of T ¼ 2048 time points recorded over 2048
milliseconds. As previously discussed, each trial was segmented into B ¼ 4 time blocks each of which lasted for 512 milliseconds. The
segmentation was defined by the experimental design. In the first time block, a cross-fixation was presented followed by the
presentation of a picture in the second time block. In the third time block, the picture was removed leaving a time period of 512
milliseconds without visual stimulus during which the monkey was believed to be processing the visual information. In the last time
block, four doors were presented. One of these doors was associated with the picture presented at the third time block and it was
the monkey’s task to identify the correct association. The image with the four doors was held on for 512 milliseconds to give the
monkey a time to choose the door. The time course of each trial is graphically described in Figure 1.

We grouped the trials into the ‘correct’ and ‘incorrect’ responses. In the former, the monkey selected the correct correspondence
(correct door). We considered a total of R ¼ 215 trials corresponding to a correct selection and R ¼ 233 corresponding to an
incorrect selection. One of our main goals is to determine if the brain functional connectivity structure between the Hc and the NAc
differs between the correct and incorrect responses. To achieve this, we performed an exploratory data analysis on the described
LFPs to investigate spectral dependence structure between the Hc and NAc at theta and gamma frequency bands for each-time
series trial set and compares the results for the correct and incorrect trials. The two components of the bivariate time series represent
electrical activity at the Hc and NAc channels. As a preprocessing step, we applied a band-pass filter for each trial at (0.1, 50) Hz and
then standardized each trial LFP to have global mean zero and unit variance.

For each condition, that is, correct and incorrect trials, we began by estimating the following dual-frequency coherence measures:

qHc;Hc½ðb; hÞ; ðq; cÞ�; qNAc;NAc½ðb; hÞ; ðq; cÞ�; qHc;NAc½ðb; hÞ; ðq; cÞ�; qHc;NAc½ðb; cÞ; ðq; hÞ�;

where b, q are the indicators of time blocks, b, q 2 f1, 2, 3, 4g. In Figure 2, we displayed the dual-frequency coherence values that
were statistically significantly different from zero. To account for multiple comparisons in this exploratory data analysis, we use the
false discovery rate procedure of Benjamini and Hochberg (1995) at the 0.05 level. We observe that the dual-frequency coherence
values are similar for correct and incorrect trials. In particular, the coherence values that exceed the threshold of 0.05 are common to
the two conditions. These common associations are represented in Figure 3, where we noted that the gamma oscillation at the NAc
region at adjacent blocks are highly related. Also, from these results we infer that increased oscillatory activity at gamma band in the
NAc leads to increased oscillatory activity at theta band in NAc at the time period when the monkey had to make a selection of
the door with the picture presented previously. This association is found in both correct and incorrect trials.

To explore spectral interactions further, we computed estimates for the amplitude coherency quantities:

fHc;Hc½ðb; hÞ; ðq; cÞ�; fNAc;NAc½ðb; hÞ; ðq; cÞ�; fHc;NAc½ðb; hÞ; ðq; cÞ�; fHc;NAc½ðb; cÞ; ðq; hÞ�:
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Coherencies in amplitude values that are significantly different from zero are displayed in colour scale in Figure 4. To account for
multiple comparisons, we use the false discovery rate procedure at the 0.05 level. We determined statistically significant differences in
cross-oscillatory coherency in magnitude for the correct and incorrect trials; these are indicated with a black dot in Figure 4.
The numerical values of coherencies in amplitude, where a significant difference was found between correct and incorrect trials, are
displayed in Table 1. A graphical representation of the links at which these significant differences were present is displayed in Figure 5.
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Figure 2. In colour scale, we show the squared root of the dual-frequency coherence values significantly different from zero (false
discovery rate correction at 0.05 level). By symmetry, we focused only on the upper diagonal matrix. The lines in the matrix define the
time blocks and the code for the matrix elements is described at the right

Figure 3. Coherence links that were significantly different from zero and greater than the threshold of 0.5. These correlations were
common in the correct and incorrect trials

1: theta Hc
2: theta NAc
3: gamma Hc
4: gamma NAc

IncorrectCorrect

block 1 block 2 block 3 block 4block 1 block 2 block 3 block 4

Figure 4. Significant values of the coherency in amplitude measures. In colour scale are showed the frequency coherencies in
amplitude values significantly different from zero (to correct for multiple comparison we used false discovery rate correction at 0.05
level). By symmetry, we focus only on the upper diagonal matrix. The lines in the matrix define the time blocks and the code for the
matrix elements is described at the right. Black dots indicate that there is a significant difference between the correct and incorrect
trials (false discovery rate correction at 0.05 level)
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It is interesting that the cross-dependence between the amplitudes of theta activity in NAc during time block b ¼ 3 (picture off)
and the amplitudes of gamma activity in Hc during time block b ¼ 4 (doorways presented) for the correct trials are greater than that
for the incorrect trials. This result suggests that fNAc,Hc[(3, h); (4, c)] could be an electrophysiological discriminator for the outcome of
a trial (correct vs. incorrect). Another interesting result is that for correct trials, the amplitudes of theta activity in NAc during the time
block b ¼ 4 (when the doorways were presented and the monkey was preparing for a response) are highly correlated with both
the theta and gamma activity amplitudes in the NAc from the picture off time block.

6. CONCLUSION

We presented exploratory tools for determining whether increased oscillatory activity at some frequency band leads increased or
decreased oscillatory activity at another frequency band. Our contributions are formal measures of dependence under the class of
piecewise harmonizable processes. We developed these tools for replicated time series where each trial can be segmented, in a
physiologically meaningful way, into disjoint time blocks. We presented an application to analyse theta and gamma frequency band
interactions, in LFP signals recorded at the Hc and NAc and found some interesting results that show differences in brain functional
connectivity between the correct and incorrect responses.
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